Intention of herbicide band application and inter-row cultivation in maize using RTK-GPS systems

Loddo D, Scarabel L, Sattin M

Institute of Agro-environmental and Forest Biology, National Research Council, Legnaro (PD), Italy

Author’s contacts: Donato Loddo (donato.loddo@ibaf.cnr.it), IBAF-CNR, Agripolis, viale dell’Università 16, 35020 Legnaro, Italy

MATERIALS AND METHODS

T1 Post-emergence herbicide band application (mesotrione and prosulfuron at 30 and 7.5 g a.i. ha⁻¹ corresponding to 50% of label dose, prototype inter-row cultivator, nozzles Tecsi 02-110, pressure 2 bar, volume of spray 180 L ha⁻¹)

T2 Pre-emergence band application (thiencarbazone-methyl and isoxaflutole at 12 and 30 g a.i. ha⁻¹ corresponding to 33% of label dose, Gaspardo seeder, nozzles Teejet TP0802EVS, pressure 2 bar, volume of spray 100 L ha⁻¹)

T3 Pre-emergence broadcast application (T3, thiencarbazone-methyl and isoxaflutole at 36 and 90 g a.i. ha⁻¹ corresponding to full label dose, Barigelli sprayer, nozzles Teejet TP11002VP, pressure 3 bar, volume of spray 200 L ha⁻¹)

Inter-row cultivation, fertilization and irrigation were applied similarly for all treatments. All operations were performed with tractors equipped with positioning and auto-steering systems based on RTK/GPS technology. A completely randomized design with replicates (0.25 ha each) was set up. Weed samplings were conducted before and three weeks after post-emergence herbicide application and at crop harvest to evaluate weed density, botanical composition and control efficacy.

RESULTS AND DISCUSSION

Weed density before control operations ranged between 15 and 30 plants m⁻² with typical summer species (Solanum nigrum, Amaranthus spp., Chenopodium album, Convolvulus arvensis). Optimal weed control (low weed biomass at harvest) and good yields (treatment mean of 7.5 t ha⁻¹ of fresh matter of silage maize) were achieved without significant differences for all tested systems, underlining the feasibility of herbicide band application integrated with inter-row cultivation for low chemical input weed control in silage maize. Further field experiments are ongoing in 2018 in other sites to confirm these results.

This study was funded by the Emilia Romagna Region within the Rural Development Plan 2014-2020 Op. 16.1.01 – GO PEI-Agri - FA 4B, Pr. “Resistenze” and coordinated by CRPV (Crop Production Research Centre – www.crpv.it)
New approaches for smarter weed management
Organiser
Kmetijski inštitut Slovenije (KIS) – Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia

Programme Committee
Dr. Jukka Salonen, Chairman / EWRS Vice-President; Prof. Dr. Hüsrev Mennan, Scientific Secretary; Prof. Dr. Paul Neve, EWRS President

EWRS Scientific Committee
Dr. Theo Verwijst, Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Sweden; Prof. Dr. Garifalia Economou-Antonaka, Faculty of Crop Production Science, Agricultural University of Athens, Greece; Dr. Kirsten Torresen, Norwegian Institute of Bioeconomy Research (NIBIO), Norway; Dr. Roland Beffa, Bayer Crop Science AG, Integrated Weed Management & Resistance Biology, Germany; Dr. Ivo O. Brants, Monsanto Europe S.A, Belgium; Jan Petersen, University of Applied Science Bingen, Germany; Christian Bohren, Research Station Agroscope Changins-Wädenswil (ACW), Switzerland; Dr. Per Kudsk, Professor & Head of Section, Dept. of Agroecology, University of Aarhus, Denmark; Maurizio Vurro, Istituto di Scienze delle Produzioni Alimentari – CNR, Italy; Dr. Marleen Riemens, Wageningen University and Research Centre, Netherlands; Prof. Dr. Svend Christensen, University of Copenhagen, Faculty of Life Sciences, Denmark; Dr. Hanan Eizenberg, Newe Ya’ar Research Center, Israel; Dr. Euro Pannacci, Dept. of Agricultural, Food and Environmental Sciences – University of Perugia, Italy; Dr. Paula Westerman, Group Crop Health, Faculty of Agricultural and Environmental Science, University of Rostock, Germany

Local Organising Committee
Assoc. Prof. Dr. Andrej Simončič, President, Agricultural Institute of Slovenia; Dr. Robert Leskovšek, Agricultural Institute of Slovenia; Dr. Gregor Urek, Agricultural Institute of Slovenia; Prof. Dr. Stanislav Trdan, Biotechnical Faculty, University of Ljubljana; Prof. Dr. Mario Lešnik, Faculty of Agriculture and Life Sciences, University of Maribor; Ela Žilič, M. Sc., Agricultural Institute of Slovenia; Marjeta Urbančič Zemljič, M. Sc., Agricultural Institute of Slovenia

Editor
Andrej Simončič

Published by
Kmetijski inštitut Slovenije, 2018

The publication is published e-only – http://www.ewrs.org
Integration of herbicide band application and inter-row cultivation in maize using RTK-GPS systems

Donato Loddo, Laura Scarabel, Maurizio Sattin
CNR, LEGNARO, Italy

Reducing herbicide use is an important step to decrease environmental impact and the risk of herbicide resistance evolution by reducing selection pressure on weeds. Herbicide application localized along the crop row can contribute to lower chemical input for weed control. A field experiment was conducted at CAB Massari farm (Conselice, RA, Northern Italy) to evaluate herbicide band application systems for silage maize.

Treatments consisted of post-emergence herbicide band application (T1, mesotrione and prosulfuron at 30 and 7.5 g ai/ha corresponding to 50% of label dose, prototype inter-row cultivator, nozzles Tecsi 02-110, pressure 2 bar, volume of spray 180 L/ha), pre-emergence band application (T2, thiencarbazone-methyl and isoxaflutole at 12 and 30 g ai/ha corresponding to 33% of label dose, Gaspardo seeder, nozzles Teejet TP0802EV, pressure 2 bar, volume of spray 100 L/ha) and pre-emergence broadcast application (T3, thiencarbazone-methyl and isoxaflutole at 36 and 90 g ai/ha corresponding to full label dose, Barigelli sprayer, nozzles Teejet TP11002VP, pressure 3 bar, volume of spray 200 L/ha). Inter-row cultivation, fertilization and irrigation were applied similarly for all treatments. Weed samplings were conducted before and three weeks after post-emergence herbicide application and at crop harvest to evaluate weed density, botanical composition and control efficacy.

Weed density in untreated areas ranged between 15 and 30 plant/m² with the presence of typical summer species (Solanum nigrum, Amaranthus spp., Chenopodium album, Convolvulus arvensis). Optimal weed control and good yields (about 7.5 and 2.5 ton/ha of fresh and dry matter) were achieved without significant differences for all tested systems, underlining the feasibility of herbicide band application integrated with inter-row cultivation for low chemical input weed control in silage maize.

This study was funded by the Emilia Romagna region within the Rural Development Plan 2014-2020 Op. 16.1.01 – GO PEI-Agri - FA 4B, Pr. »Resistenze« and coordinated by CRPV.